Presentamos el siguiente problema: Construir un triángulo $ABC$ conociendo las intersecciones $A' ,B', C'$ de sus medianas con la circunferencia circunscrita.
Considerando el problema desde el punto de vista del triángulo $A'B'C'$, se trata de obtener, dado un triángulo $A'B'C'$ un punto $G$ tal que dicho punto sea el baricentro del triángulo circunceviano $ABC$ de $G$ respecto de $A'B'C'$. En este trabajo usamos Mathematica para ver que el problema tiene dos soluciones, que se obtienen como intersección de tres cúbicas, y que puede comprobarse que son los focos de la elipse inscrita de Steiner del triángulo $A'B'C'$ dado.
Más información en este enlace.
Triángulo circunceviano del baricentro
Este comentario ha sido eliminado por el autor.
ResponderEliminarPaco,
ResponderEliminarGeoGebra te permite trazar directamente el centro de una circunferencia y los focos de una cónica. Para el centro de la circunferencia tienes la herramienta "Punto medio o centro", quinta de la 2ª caja. para los focos de una cónica, simplemente se utliza el comando Foco[] en la línea de entrada, donde es el nombre de la cónica en cuestión. En esta construcción, Foco[e_1] (se crean los dos).